CSE 589
Applied Algorithms
Spring 1999

Subset Sum
Algorithm Evaluation
Mergesort

An Easy NP-Complete Problem

- Subset Sum
- Input: Integers $a_{1}, a_{2}, \ldots, a_{n}, b$
- Output: Determine if there is subset $X \subseteq\{1,2, \ldots, n\}$ with the property
$\sum_{i \in X} a_{i}=b$
- Algorithm:
- Let A[0..b] be a Boolean array of size b+1 initialized as follows $A[0]=1$ and $A[i]=0$ for $1 \leq i \leq b$.
- After scanning the input $a_{l}, a_{2}, \ldots, a_{k}$ maintaining the invariant that $\mathrm{A}[\mathrm{i}]=1$ if and only if some subset of a_{p}, a_{2}, \ldots, a_{k} adds up to i.

Example of the Algorithm

$3,5,2,7,4,2, b=11$

```
for k=1 to n do
    for i = b to 0
        if }A[i]=1\mathrm{ and }\mp@subsup{a}{k}{}+i\leqb\mathrm{ then
            A[\mp@subsup{a}{k}{}+i]:=1
if A[b]=1 then some subset adds up to b
```

Time Complexity is $\mathrm{O}((\mathrm{b}+1) \mathrm{n})$
Polynomial time?

CSE 589 - Lecture 7 - Spring 1999

Polynomial or Exponential?

- $\mathrm{O}((\mathrm{b}+1) \mathrm{n})$
- b is represented in binary
$-a_{1}, a_{2}, \ldots, a_{n}, b \leq 2^{k}$ where problem size $s \leq(n+1) k$
- array $\mathrm{A}[0 . . \mathrm{b}]$ has size at most $2^{\mathrm{k}}+1=2^{\mathrm{s} /(\mathrm{n}+1)}+1$.
- b is represented in unary
$-a_{1}, a_{2}, \ldots, a_{n} \leq 2^{k}$ where problem size $s \leq k n+b$
- array A[0..b] has size $b+1 \leq s$.

Strong NP-Completeness

- A decision problem is strong NP-complete if it remains NP-complete even if the numerical inputs are presented in unary.
- Subset Sum and similar problems are polynomial time solvable if the problem is presented in unary.
- 3-Partition and Bin Packing are strong NPcomplete.

Some "Hard" Problems are Easy

- Example: Given a set of fields of a structure of length $f_{1}, f_{2}, \ldots, f_{n}$ in bytes. Can they be fit into two cache lines of length b bytes each.
- Critical observation: b is small, often 32 or 64.
- Algorithm: Use the subset sum algorithm to find the largest $\mathrm{c} \leq \mathrm{b}$ such that some subset of the fields fits exactly into c bytes. You will need the method of reporting a solution from the decision problem to report a subset that adds up to c . The remaining field lengths must sum to be $\leq b$.

Evaluating Algorithms - Correctness

- Correctness or quality of the answer
- Does it give the right answer.
- Does it give an answer that is close to the right answer (for an approximate algorithm).
- This can be extremely difficult to determine.
- Does it give a good answer on real data or on what I foresee as real data.
- Must implement and test on real data.
- Use of benchmarks
- Good because common to all.
- Bad because algorithms can be tuned to a benchmark.

CSE 589 - Lecture 7 - Spring 1999
8

Examples of Quality Criteria

- Lossless Data Compression
- compression ratio
- VLSI Layout
- area used
- Compiler Optimization
- percentage reduction in execution time
- Encryption
- Security of the method from attacks
- Traveling Salesman's Tour
- closeness to optimal

CSE 589 - Lecture 7-Spring 1999

Empirical Evaluation

- Must implement to test
- Data
- real data set
- synthetic - generated by a program
- Profiling
- wall clock execution time
- performance monitoring using processor counters
- instrument program with internal counters
- binary instrumentation tools - Atom, Etch, ...

CSE 589 - Lecture 7 - Spring 1999
11

Theoretical Analysis

- Time complexity
- worst case
- average case
- amortized time complexity
- Storage complexity
- worst case
- average case
- Important operation counts
- Memory performance
- cache misses or page faults

CSE 589 - Lecture 7 - Spring 1999

10

Sorting

- Input: Array A[1..n] of keys.
- Output: $A[1 . . n]$ in sorted order, that is for $1 \leq i$ $<n, A[i]<A[i+1]$.

Merging (2)
[1458199101914

Mergesort Analysis

- Storage complexity is $2 n$ plus $\mathrm{O}(\log \mathrm{n})$ for the call stack.
- This is not an "in-place" sorting algorithm.
- Time complexity is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.
- Recurrence describes the running time

Mergesort(i,k)
Mergesort(k+1,j);
Merge $A[i . . k]$ with $A[k+1 . . j]$ into $B[i . . j]$; Copy B[i..j] into A[i..j];

$$
T(0), T(1) \leq a
$$

$$
T(n) \leq 2 T(n / 2)+b n
$$

$$
2 \text { recursive calls Time to merge and copy. }
$$

Solving the Recurrence

