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Subset Sum
Algorithm Evaluation
Mergesort

An Easy NP-Complete Problem

e Subset Sum
— Input: Integers  @,,8,,...,8,,0
— Output: Determine if there is subset X [1{1,2,...,n}

with the property _
Sa=b
 Algorithm: '

— Let A[0..b] be a Boolean array of size b + 1 initialized
as follows A[0] =1 and Ali]=0for1<i<b.

— After scanning the input a,, a,, ... , g maintaining the
invariant that A[i] = 1 if and only if some subset of a,,
a, ..., gaddsuptoi.
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Subset Sum Algorithm

fork=1tondo

fori=bto0
if Alil =1 and a, +i < b then
Alg +i]:=1

if A[b] = 1 then some subset adds up to b

Time Complexity is O((b+1)n)

Polynomial time?
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Example of the Algorithm
3,5,2,7,4,2,b=11

012 3456 78091011
[1]o]ofofofofo[ofo[ofo]0]

[1]o]o[1]o]ofo]ofo]o]0]0]
[1]o]o[1]o[1]0]o]1]o]0]0]
[1]o]1]1]o[1]o]1]1]o]1]0]
[1o]1]1]o[1]o]1]1]1]1]0]
(1fof1f2faa]a]1]a]2]1]1]
(1]of1]afa]a a2 2 1 2]1]
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Polynomial or Exponential?

e O((b+1)n)
* b is represented in binary
—a,,a,, ..., &, b <2k where problem size s < (n+1)k
— array A[0..b] has size at most 2k + 1 = 2s/(m1) 4 1,
* bis represented in unary
—a,,a,, ..., &, < 2k where problem size s<kn +b
— array A[0..b] has size b+1 <s.
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Strong NP-Completeness

* A decision problem is strong NP-complete if it
remains NP-complete even if the numerical
inputs are presented in unary.

¢ Subset Sum and similar problems are
polynomial time solvable if the problem is
presented in unary.

« 3-Partition and Bin Packing are strong NP-
complete.
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Some “Hard” Problems are Easy

« Example: Given a set of fields of a structure of
length fy, f,, ... f,in bytes. Can they be fit into
two cache lines of length b bytes each.

Critical observation: b is small, often 32 or 64.
Algorithm: Use the subset sum algorithm to
find the largest ¢ < b such that some subset of
the fields fits exactly into ¢ bytes. You will need
the method of reporting a solution from the
decision problem to report a subset that adds
up to c. The remaining field lengths must sum
to be <b.
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Evaluating Algorithms - Correctness

» Correctness or quality of the answer
— Does it give the right answer.

— Does it give an answer that is close to the right
answer (for an approximate algorithm).

* This can be extremely difficult to determine.

— Does it give a good answer on real data or on what |
foresee as real data.

» Must implement and test on real data.

* Use of benchmarks
— Good because common to all.
— Bad because algorithms can be tuned to a benchmark.
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Examples of Quality Criteria

Lossless Data Compression

— compression ratio

VLSI Layout

— area used

Compiler Optimization

— percentage reduction in execution time
Encryption

— Security of the method from attacks
Traveling Salesman’s Tour

— closeness to optimal
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Theoretical Analysis

Time complexity

— worst case

— average case

— amortized time complexity

« Storage complexity

— worst case

— average case

Important operation counts
* Memory performance

— cache misses or page faults
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Empirical Evaluation

¢ Must implement to test
e Data
— real data set
— synthetic - generated by a program
« Profiling
— wall clock execution time
— performance monitoring using processor counters
— instrument program with internal counters
— binary instrumentation tools - Atom, Etch, ...
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Atom

¢ Alan Eustace and Amitabh Srivastava (1994)
« Examples of use

— Simulate a cache with specific parameters (size,
block size, associativity). Output total memory
accesses and cache misses.

— Generate a histogram of heap data sizes allocated

— Simulate a branch prediction scheme. Output
successes.

« How done
— Atom inserts code into a binary to do specific tasks.
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Atom Flow

Instrumentation
code

N

Executable Instrumented
binary executable

Analysis Ar:jal:lsis
code ata

CSE 589 - Lecture 7 - Spring 1999

13

Sorting

 Input: Array A[1..n] of keys.

¢ Output: A[1..n] in sorted order, thatis for 1 <'i
<n, A[i] < Afi+1].

[27]5[1420] 1 [25]29[1. 7[10] 4 [15] 9 [30[31]26] 8]

[1]4]5]8]91001415[17]2025]26127]29[830[31]
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Classic Mergesort

« Two sorted arrays can be merged into one
sorted array very quickly in time O(n + m)
where n and m are the sizes of the arrays.

[1]5 \10\1}1\20\25\27\29\ [4]8]9 \1;\17\26\30\31\

[1]als[8lofd [T TTTTTTT]
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Merging (1)

[1]5 \10\14\2;)\25\27\29\ [4]8]9 \1;\17\26\30\31\

[1]a]s[8lofdid T T T T T TTT]

CSE 589 - Lecture 7 - Spring 1999 16

Merging (2)

[1]5 \10\14\2{)\25\27\29\ [4]8]9 \15\1;\26\30\31\

\1\4\5\8\9\10\14\15\T\ [[TTTT]
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Merging (3)

[1]5 \10\14\2{)\25\27\29\ [4]8]9 \15\17\2330\31\

\1\4\5\8\9\10\14\15\17\T\ [[TTT]
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Recursive Mergesort

A[1..n] is to be sorted;
B[1..n] is an auxiliary array;

Mergesort(i,j) {sorts the subarray A[i,j] }
ifi <jthen
k = (i+))/2;
Mergesort(i,k);
Mergesort(k+1,j);
Merge A[i..k] with A[k+1..j] into BIi..jl;
Copy BIi..j] into A[i..jJ;
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Mergesort Analysis

» Storage complexity is 2n plus O(log n) for the
call stack.
— This is not an “in-place” sorting algorithm.
* Time complexity is O(n log n).
— Recurrence describes the running time
T0),T@<a
T(n)<2T(n/2)+bn
/4

2 recursive calls Time to merge and copy.
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Solving the Recurrence
T0), T@®<a

T(n)<2T(n/2)+bn
<2(2T(n/4)+bn/2)+bn substitution
=4T(n/4)+2bn algebra
< ZkT(n/ Zk) +kbn generalization
<nT(1) +bnlog,n n=2%
<an+bnlog, n
=0O(nlogn)
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Merging Pattern of Recursive
Mergesort
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