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An Easy NP-Complete Problem

• Subset Sum
– Input: Integers
– Output: Determine if there is subset

with the property

• Algorithm:
– Let A[0..b] be a Boolean array of size b + 1 initialized

as follows A[0] = 1 and A[i] = 0 for 1 < i < b.
– After scanning the input a1, a2, … , ak maintaining the

invariant that A[i] = 1 if and only if some subset of a1,
a2, … , ak  adds up to i.
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Subset Sum Algorithm

for k = 1 to n do
    for i = b to 0 
        if A[i] = 1 and ak + i < b then
            A[ak + i] := 1
if A[b] = 1 then some subset adds up to b

Time Complexity is O((b+1)n)

Polynomial time?
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Example of the Algorithm
3, 5, 2, 7, 4, 2, b = 11

1 0 0 0 0 0 0 0 0 0 0 0
0   1   2    3   4    5   6    7   8   9  10  11

1 0 0 1 0 0 0 0 0 0 0 0
3

5
1 0 0 1 0 1 0 0 1 0 0 0

2
1 0 1 1 0 1 0 1 1 0 1 0

7
1 0 1 1 0 1 0 1 1 1 1 0

4
1 0 1 1 1 1 1 1 1 1 1 1

2
1 0 1 1 1 1 1 1 1 1 1 1
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Polynomial or Exponential?

• O((b+1)n)
• b is represented in binary

– a1,a2, … , an, b < 2k  where problem size s < (n+1)k
– array A[0..b] has size at most 2k + 1 = 2s/(n+1) + 1.

• b is represented in unary
– a1,a2, … , an < 2k  where problem size s < kn + b
– array A[0..b] has size b+1 < s.
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Strong NP-Completeness

• A decision problem is strong NP-complete if it
remains NP-complete even if the numerical
inputs are presented in unary.

• Subset Sum and similar problems are
polynomial time solvable if the problem is
presented in unary.

• 3-Partition and Bin Packing are strong NP-
complete.
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Some “Hard” Problems are Easy

• Example:  Given a set of fields of a structure of
length f1, f2, … ,fn in bytes.  Can they be fit into
two cache lines of length b bytes each.

• Critical observation:  b is small, often 32 or 64.
• Algorithm:  Use the subset sum algorithm to

find the largest c < b such that some subset of
the fields fits exactly into c bytes.  You will need
the method of reporting a solution from the
decision problem to report a subset that adds
up to c. The remaining field lengths must sum
to be < b.
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Evaluating Algorithms - Correctness

• Correctness or quality of the answer
– Does it give the right answer.
– Does it give an answer that is close to the right

answer (for an approximate algorithm).
• This can be extremely difficult to determine.

– Does it give a good answer on real data or on what I
foresee as real data.
• Must implement and test on real data.
• Use of benchmarks

– Good because common to all.
– Bad because algorithms can be tuned to a benchmark.

CSE 589 - Lecture 7 - Spring 1999 9

Examples of Quality Criteria

• Lossless Data Compression
– compression ratio

• VLSI Layout
– area used

• Compiler Optimization
– percentage reduction in execution time

• Encryption
– Security of the method from attacks

• Traveling Salesman’s Tour
– closeness to optimal
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Theoretical Analysis
• Time complexity

– worst case
– average case
– amortized time complexity

• Storage complexity
– worst case
– average case

• Important operation counts
• Memory performance

– cache misses or page faults
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Empirical Evaluation

• Must implement to test
• Data

– real data set
– synthetic - generated by a program

• Profiling
– wall clock execution time
– performance monitoring using processor counters
– instrument program with internal counters
– binary instrumentation tools - Atom, Etch, ...
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Atom

• Alan Eustace and Amitabh Srivastava (1994)
• Examples of use

– Simulate a cache with specific parameters (size,
block size, associativity). Output total memory
accesses and cache misses.

– Generate a histogram of heap data sizes allocated
– Simulate a branch prediction scheme.  Output

successes.

• How done
– Atom inserts code into a binary to do specific tasks.
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Atom Flow

Executable
binary

Instrumentation 
code

Analysis 
code

Instrumented
executable

Analysis
data

Atom
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Sorting

• Input: Array A[1..n] of keys.
• Output: A[1..n] in sorted order, that is for 1 < i

< n, A[i] < A[i+1].

1 4 5 8 9 1014151720252627293031

1 45 891014 151720 25 2627 29 3031
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Classic Mergesort

• Two sorted arrays can be merged into one
sorted array very quickly in time O(n + m)
where n and m are the sizes of the arrays.

1 5 10142025 2927 4 8 9 151726 3130

1 4 5 8 9 10
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Merging (1)

1 5 10142025 2927 4 8 9 151726 3130

1 4 5 8 9 1014
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Merging (2)

1 5 10142025 2927 4 8 9 151726 3130

1 4 5 8 9 101415

CSE 589 - Lecture 7 - Spring 1999 18

Merging (3)

1 5 10142025 2927 4 8 9 151726 3130

1 4 5 8 9 10141517
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Recursive Mergesort

A[1..n] is to be sorted;
B[1..n] is an auxiliary array;

Mergesort(i,j) {sorts the subarray A[i,j] }
    if i < j then
        k := (i+j)/2;
        Mergesort(i,k);
        Mergesort(k+1,j);
        Merge A[i..k] with A[k+1..j] into B[i..j];
        Copy B[i..j] into A[i..j];
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Mergesort Analysis

• Storage complexity is 2n plus O(log n) for the
call stack.
– This is not an “in-place” sorting algorithm.

• Time complexity is O(n log n).
– Recurrence describes the running time
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2 recursive calls Time to merge and copy.
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Solving the Recurrence
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Merging Pattern of Recursive
Mergesort


